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1.0   Introduction 

This report summarizes work conducted over a two year period to improve numerical 
methods. The report has three main sections. Section 2 covers work on synthetics for 
layered earth models. Section 3 reports on three-dimensional (3D) elastic finite difference 
calculations and the relationship between one-dimensional (ID) (layered earth) and 3D 
laterally heterogeneous wavefields. Section 4 reports on development of a finite difference 
program to model the response of permeable hoses to atmospheric pressure fluctuations 
from wind turbulence. 

Section 2 reports on work conducted to port a wavenumber integration synthetics 
code to the Parallel Virtual Machine software and tests of this software. Numerical 
experiments were performed with random layering added to suites of layered crustal earth 
models. It was verified that random layering does make synthetics look more like observed 
seismograms without significantly altering the overall attenuation and spectra of Pg and 
Lg waveforms. The wavenumber integration code was modified to permit frequency 
dependent Q(f) models. Numerous studies have found that Lg Q(f) is proportional to 
frequency to some power ranging between 0 and 1. Such studies commonly parameterize 
Q(f) = Qo * f1. Numerical experiments were performed with a suite of crustal models to 
compare synthetics with three different Q models. 

In Section 3, we report on analysis of the 3D scattered wavefield computed using 3D 
elastic finite differences with modal summation and wavenumber spectra on phase screens. 
We compute scattered waves in randomly heterogeneous 3D velocity models. The total 
elastic wavefield (3 components of particle velocity) is saved on vertical planes at selected 
distances from the source. The modal spectra and wavenumber spectra is estimated on 
those planes and compared to computations for a layered structure in order to gain insight 
into the scattering process. 

In Section 4, we report on development of a finite difference program, Maxhose, to 
compute the response of permeable hoses to atmospheric pressure fluctuations (noise) and 
signals. Permeable hose arrays are planned as noise reduction measures for the deployment 
of infrasound stations in the CTBT International Monitoring System. These noise 
reduction systems are critical to the expected performance of the entire infrasound system. 
Maxhose was developed to provide a useful tool for understanding and predicting the 
performance of hoses given the frequency-wavenumber characteristics of turbulent wind 
noise. 



2.0 Layered Earth Model Wavenumber Integration Synthetics 

2.1 Wavenumber Integration Synthetics Using A Parallel Virtual Machine 

In the first year of this project a wavenumber integration program, Prose (Apsel and 
Luco, 1983), was ported from a single processor application to a parallel processing 
environment using the Parallel Virtual Machine (PVM) software environment. This 
software allows the user to harness a network of UNIX workstations to perform 
calculations in parallel. A PVM based parallel wavenumber integration program was 
developed that computes Green's functions in CSS 3.0 format readable with SAC. Near 
linear speed-up over a single processor has been realized with a heterogeneous network of 
SUN OS4/Solaris, HP, SGI, and DEC workstations tested over WAN and LAN. The 
software requires PVM 3.3.11, a FORTRAN F77 compiler, and a C compiler. The Gnu- 
make program is recommended on SGI, HP, and DEC workstations. Interested 
users should contact Keith L. McLaughlin (scatter@maxwell.com). Current 
information on the availability of the software can be found on the Internet at 
http://www.maxwen.com/proaucts/geop. The interested reader is referred to McLaughlin 
and Shkoller (1996) for detailed descriptions of the load balancing algorithms employed. 

2.1.1   What is PVM? 

All parallel computer algorithms are composed of modules which are executed on 
multiple processors, messages that must be sent between these modules, and strategies for 
coordinating the modules and processors to work in parallel. The modules are typically 
distributed over a set of processors that are connected in some sort of communications 
network. Much of the programming work to develop a parallel algorithm is focused on 
passing messages between these modules and synchronizing their work. Commercially 
available massively parallel processors (MPP) provide custom compilers and libraries to 
facilitate this kind of programming. However, most research institutions already have the 
makings of a parallel machine; they typically have several workstations connected in a 
local area network. The aggregate computing power of their workstations often exceeds 
the CPU power that might be available at a supercomputer center. Furthermore, these 
machines are often idle much of the day or night. 

Parallel Virtual Machine (PVM) is a public domain software system for turning a 
network of computers into a virtual parallel computer (Geist et al. 1994). The software 
supports heterogeneous networks including nearly all UMX workstations and many 
parallel and single processor supercomputers. The software is based on widely used 
TCP/IP message passing protocols and therefore functions over a wide variety of local 
area networks (LAN) and wide area networks (WAN). The user interface libraries are 
both FORTRAN (F77 and F90) and C callable from a user's program. PVM frees the user 
from the arcane details of TCP/IP message passing between programs (processes) by 
providing a high level C or FORTRAN user interface and providing buffering and routing 
daemons for to the TCP/IP packets on the user's computer. This is done by running 
daemon process on each processor that serve as a relay posts for all messages passed 
between the user's programs running on each processor. PVM may be obtained by 
anonymous  ftp  from  Oak Ridge National  Lab  and  University  of Tennessee   at 

.. -. ■'     •■■■ ■■■ - 



http://www.epm.ornl.gov/pvm/pvm home.html. Installation of PVM 3.3.11.requires an ANSI C 
compiler and can be accomplished in less than an hour. 

2.1.2   Wavenumber Integration Synthesis -"The Perfect Parallel Algorithm" 

Wavenumber integration calculations (Apsel and Luco, 1983) are computationally 
bound by the time it takes to compute the complex response between a source and a 
receiver for a given frequency. Wavenumber integration is also the "perfect parallel 
algorithm" because computation of one frequency 1) is independent of all other 
frequencies, 2) requires only a few input values, 3) results in only a few output values, and 
4) there are many frequencies to compute. These programs are well suited to a master - 
slave architecture (Figure 1). The master program performs all file input/output and 
organizes the work of the many identical slave programs running on multiple processors in 
the network. We treat each slave program like a function call for each complex Green's 
function response at a fixed frequency and fixed source and fixed receiver. Figure 2 
illustrates the concept behind the use of the master - slave modules on a virtual parallel 
machine using PVM. The master program sends messages to the slave programs telling 
them which frequencies to compute and then waits for the results to return from the slaves 
in the form of messages. When the slave programs are not computing the response at a 
specific frequency, they are waiting for instructions from the master program. The slave 
programs return the numerical results as well as timing information that is useful in load 
balancing the calculation. 



Parallel Virtual Machine 

Host#l 

Master 
Program 

Slave 

Host #3 

Slave 

Host #2 

Slave 

Slave 

Host #4 

Slave 

Host #5 
Slave 

Figure 1. The master program sends and receives messages through the PVM 
daemon (PVMD) which routes the messages to other daemons on the way 
to and from slave modules. There may be multiple slaves on a single host 
and there is often both a slave and master program running on the same 
host. 

Key to success is balancing the computational load between machines (hosts or 
processors) in the network. A heterogeneous network of workstations may contain a 
varied mix of slow and fast machines Furthermore, as a computation proceeds, the load 
on each machine will change with time as other users start-up and terminate other 
processes Also, some machines may be on a local network and communications may be 
almost instantaneous while others may be further away on a wide area network and 
messages may require a greater time for delivery. Therefore, it is necessary to keep a 
concise database within the master program of the relative performance of each processor. 
We use a very simple algorithm for load balancing; a list of processors is ranked by speed 
and a list of tasks (frequencies) is maintained. Tasks are checked off the list as they are 
completed and the next task is always sent to the fastest available host. Near the end of the 
computation, if we have sent each task out and we have available hosts, we do not wait 
for slow hosts to complete their tasks but rather re-send those tasks out to the fastest 
available host. The goal is to keep all slave modules working. The resulting algorithm is 
therefore robust with respect to changes that do happen in the network(s) and on the 
various parts of the parallel virtual machine. The reader is referred to McLaughlin and 
Shkoller (1996) for details. 
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The master and slave programs, prosem and proses, are based on the wavenumber 
integration algorithm of Apsel and Luco (1983). File formats and program options are 
discussed in the UNIX style manual page included with the software distribution. The 
master program, prosem, starts up the parallel virtual machine, spawns the slave 
programs, proses, on each host and saves the frequency domain output in a file. A second 
program, gseis, is then run that computes the time domain Green's functions and stores 
them in CSS 3.0 format with a wfdisc file (see Anderson et al. 1990a and 1990b for 
definitions of CSS 3.0 format). This seismogram format can be read arid manipulated using 
a number of programs including the popular Seismic Analysis Code {SAC, 1995). 

2.2    Random Layering 

It has been suggested that introduction of random velocity variations into a layered 
crustal model produce more realistic looking regional phases (Harvey, 1992). Real 
regional seismograms tend to exhibit extended Pg and Lg wavetrains while layered Earth 
synthetics often have very simple regional waveforms consisting of several strong isolated 
spikes. One way to reduce these isolated spikes and generate more extended waveforms is 
to introduce interfaces that produce many small internal reflections between the up-going 
and down-going waves trapped in the crust. We have experimented with introducing 1 km 
thick layers and random velocities distributed about the mean background model. The 
modified Mooney et al. (1997) layered Earth models, and details of the synthetic 
computation procedures are described in Bennett et al. (1997), and the frequency and 
depth dependent attenuation model, Q(f,z) = Q0(ß,z)f1, is described in Section 2.3 of this 
report. Figures 2 and 3 compare Green's functions model D2 with and without random 
layers of 5% variation. The Pn and Sn waveforms in the two sets of Green's functions are 
larger and more impulsive with the random layering than without. Also, some of the 
isolated spikes in the Pg and Lg wavetrains are reduced. 

Figure 4 shows more such random perturbations to the DA GA, H2, and N4 models 
of Mooney et al. (1997). Variations of 0%, 2.5%, 5%, 7.5%, and 10.0% RMS random 
velocity variation have been introduced into both P and S wave velocities throughout each 
model. Green's functions for these models are compared in Figure 5 through Figure 8. The 
four background models were chosen for their diversity; the models represent a thick set 
of platform deposits (DA), a high-velocity crust with very thin sediments (GA), a 
moderate velocity crust with no sediments (H2), and a thin crust with sediments (N4). 
Smoothed Lg/Pg spectral ratios computed from these synthetic seismograms are shown in 
Figure 11. 

It is ironic that while our principal goal was to generate more realistic Pg and Lg 
waveforms, introduction of random layering has made the Pn and Sn waveforms larger, 
more impulsive, and more realistic. These waves travel in the upper mantle waveguide and 
are sensitive to the velocity gradients just below the Moho. The background mantle PEM 
model has no gradient except for the "earth flattening" approximation. We presume that in 
the absence of the many interfaces, the waves consist of only a few rays or modes that 
propagate in the upper mantle waveguide. Addition of the random interfaces appears to 
proliferate the number of rays/modes that contribute to the Pn and Sn waveforms. 
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Figure 2. Comparison of synthetic transverse component Green's function, Gyxy, at 
400 km, source depth h=15km, with (top) and without (below) 5% random 
velocity variations in the layered model D2. Note that the more impulsive Sn 
arrival from the random layered structure and that the reduced isolated 
"spikes" in the Lg signal. 
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Figure 3. Comparison of vertical component Green's function, G*, at 400 km, source 
depth h=lkm, with (top) and without (below) 5% random velocity 
variations in the layered model D2. Note the more impulsive Pn waveform 
and the reduced "spikes" in the Pg from the randomized structure. 
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Model DA with 0, 2.5.5.0 7.5 and 10% RMS ModclGA wilh 0,2.5.5.0 7.5 and 10% RMS 
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Figure 4.       P-wave velocities versus depth for layered models DA, GA, H2, and N4 
with 0%, 5%, 7.5%, and 10% velocity variations. 
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Figure 5.       Comparison of Green's functions for model DA with 0%, 2.5%, 5.0%, 
7.5%, and 10% velocity variation (top to bottom). 
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Figure 6.        Comparison of Green's functions for model GA with 0%, 2.5%, 5.0%, 
7.5%, and 10% velocity variation (top to bottom). 
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Figure 7. 
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Figure 8.        Comparison of Green's functions for model N4 with 0%, 2.5%, 5.0%, 7.5%, 
and 10% velocity variation (top to bottom). 
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Figure 9.       Vertical seismogram at 600 km from an earthquake source (h=12.5km) for 
layered model DA with 0%, 2.5%, 5.0%, 7.5%, and 10% velocity variation. 
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Figure 11.     Vertical component Lg/Pg spectral ratios for models DA, GA, H2, and N4 
for an explosion source (h=lkm) and 0, 2.5, 5, 7.5, and 10% RMS random 
velocity layers. Note that the general character of the Lg/Pg ratio while very 
different for each background model, is not altered much by the introduction 
of random velocity layers. 

2.3    Frequency Dependent Attenuation, Q(f) = Qo*r 

We have examined three simple crustal attenuation models, Ql, Q2, and Q3 in detail. 

Ql) Q_if,z) = <Vf, n = 0, Qon = ß(z)/10 for z > 0 m, 

Q2) Qn&z) = Qo/f1, Ti = 0, Qon = ß(z)/5 for z > 3 km, low Q surface layers 

Q3) Q^z) = <VF, TI = 0.5, Qon = ß(z)/5 for z > 3 km, low Q surface layers. 

The choice of model Q3 was based on three requirements. 
• Low Q surface layers are required to attenuate unwanted short-period low-group 

velocity higher modes and Rg that propagate in the low-velocity near surface 
layers. We chose Q0„ = 25 for 0 < z < 1 km, Q0|1 = 75 for 1 km < z < 2 km and Q0(l 

= 150for2km<z<3km. 

• Average shear and compressional Q values in the crust must generally produce 
Lg/Pg ratios greater than unity near 1 Hz for earthquake mechanisms. We found 
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that Q0fl = ß(z)/5 for z > 3 km would yield reasonable Lg/Pg ratios near 1 Hz, 
while the model Q0ft = ß(z)/10 attenuated Lg too much. 

• Short-period earthquake Lg/Pg spectral ratios as a function of frequency should 
generally remain above or near unity from 1 to 5 Hz. We chose Q proportional to 
f05 in order to keep Lg/Pg ratios from declining too steeply as a function of 
increasing frequency. 

Figures 12 and 13 show compilations of Lg/Pg spectral ratios from Bennett et al. 
(1997). Earthquake Lg/Pg ratios generally slowly decrease with increasing frequency. 

Synthetics from a variety of crustal models suggested that in order to produce 
earthquake-like Lg/Pg ratios greater than unity near 1 Hz the higher Q0's of models Q2 
and Q3 are preferred to those of model QL Also, to keep Lg/Pg ratios relatively flat as a 
function of frequency, an increase in Q as a function of frequency (r\ > 0) is needed. The 
Lg/Pg ratios above 1 Hz for models Ql and Q2 were too small and do not agree with 
observations. Lg Q increasing with increasing frequency is commonly observed (Nuttli, 
1981; Goncz et al, 1986, Gupta and McLaughlin 1987; Campillo et al, 1985; Mitchell 
1981) with t| between 0 and 1. It should be noted that numerous researchers have found a 
negative correlation between Q0 and TJ; the higher Q is at 1 Hz, the slower it increases 
with increasing frequency. Therefore, it may be possible to reproduce many of the 
observed results by assuming higher Qo's with somewhat smaller values of r\ < 0.5. Also, 
in tectonic regions with lower 1 Hz Q values, the value of rj may be higher. 

Figures 15-17 show explosion and earthquake Green's functions computed for the 
three Q models. The velocity model D2 is well suited to show off the differences between 
Ql, Q2, and Q3. The earthquake Lg amplitudes are too small in models Ql and Q2 for 
both the broadband and the higher frequency seismogram (0.5 Hz highpass Figure 14 and 
3.0 Hz highpass Figure 16). A shallow explosion excites very slow unrealistic waves in the 
near surface layers in model Ql (Figure 15). 
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Figure 12. 

Figure 13. 

Average Explosion Lg/Pg Ratios from Bennett et al. (1997) 
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Compilation of average explosion Lg/Pg spectral ratios from Bennett et al. 
(1997) for explosions in Asia and Western US. Note that the average Lg/Pg 
is generally greater than unity for frequencies at and below 1 Hz. 
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Figure 14. Comparison of vertical component synthetics (high pass at 0.5 Hz) at 200 
km for three Q(f,z) models and velocity model D2, Ql (top), Q2 (middle), 
Q3 (bottom). A dip-slip double-couple source (Gzds) at 15 km depth is 
shown. The Lg amplitude is significantly increased relative to the Pg 
amplitude for TI=0.5, Qo=ß/5, model Q3. 
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Comparison of vertical component synthetics (high pass at 0.5 Hz) at 200 km 
for three Q(f,z) models and velocity model D2, Ql (top), Q2 (middle), Q3 
(bottom). An explosive source (Gzi) at 1 km depth is shown. The high Q 
surface layer model does not sufficiently attenuate the late arriving 
fundamental surface waves excited by the shallow explosive source. Also, it 
is clear that the Ql, high Q surface layer model contains too much shallow 
propagating energy in the Lg window that is absent in the low Q surface 
layer models, Q2 and Q3. 
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Comparison of vertical component synthetics (high pass at 3.0 Hz) at 200 
km for three Q(f,z) models and velocity model D2, Ql (top), Q2 (middle), 
Q3 (bottom). An explosive source (Gzi) at 1 km depth is shown below. The 
Lg is almost non existent in model Q2. 
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3.0 Finite Difference 3D Regional Scattering Calculations 

3.1 Introduction 

Numerical methods for 3D elastic wave propagation have made significant advances in 
the last decade due in part to better software, but largely due to exponential growth of 
computer capabilities. For a fixed price, computer memory and speed roughly double 
every 18 months (popularly known as "Moore's Law"). Provided such technological 
advances continue it will be another decade or more before 3D computations are as 
economical as ID computations today. 3D computations require 8 times more memory 
and 16 times more CPU time than comparable ID computations. For example, 
computation by wavenumber integration of a record section of 0.5 Hz regional Green's 
functions from 0 to 200 km at 0.5 km intervals requires about l/20th the time as a section 
of 3D waveforms for a single source (hours versus days). While the suite of 3D 
seismograms is far richer than the ID record section, the bandwidth and range of the 3D 
computation is far more limited than the ID computation. With this in mind, it is beneficial 
to leverage ID numerical methods as much as possible in understanding 3D results and 
devising hybrid methods for seismogram calculation. 

Seismologists have developed extensive insight into the nature of wave propagation in 
layered earth models using ID methods. Layered earth model synthetics correctly predict 
many of the gross features of regional seismograms. Distinct regional phases such as Pn, 
Pg, Sn, Lg, and Rg propagate as loosely coherent wave packets with well defined group 
velocities for large distances in crustal and upper mantle waveguides. 3D methods aim to 
predict how these phases are affected by scattering. For some cases we can view the 3D 
scattering as a perturbation upon the waveguides. From the point of view of modal 
summation methods, we can examine how the "modes" defined by the average ID layered 
structure exchange energy with increasing range. Alternatively, we can view the outgoing 
wavefield from the point of view of wavenumber integration or phase screen methods. We 
can view the scattering as converting energy from one wavenumber into energy at a 
different wavenumber. 

In this section, we report on work we have done to analyze the scattered wavefield 
computed using 3D elastic finite differences with modal summation and wavenumber 
spectra on phase screens. We compute scattered waves in 3D velocity models constructed 
by adding random perturbations to a mean crustal model. The total elastic wavefield (3 
components of particle velocity) is saved on vertical planes at selected distances from the 
source. We then estimate the modal spectra and the wavenumber spectra on those planes. 
We compare these spectra with computations for a layered structure in order to gain 
insight into the scattering process. 

Tres3D with recursive grid refinement was used to compute complete 3D elastic wave 
propagation in a 3D laterally heterogeneous model. Tres3D is a 2nd order explicit finite 
difference code for 3D rectangular meshes. It requires a minimum of 10 cells/wavelength 
and the grids were designed to provide a bandwidth from 0 to 0.6 Hz. Sources are 
inserted as moment tensors. Recursive grid refinement (RGR) described in McLaughlin 
and Day (1995) uses nested grids to decrease memory and CPU time. Fine zoning is used 
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in the crust (250 m), coarser zoning is used in the upper most mantle (500 m) and the 
coarsest zoning (1000 m) is used in the deepest mantle. Moderate to high attenuation is 
used in the mantle to suppress reflections from the bottom of the grid and the coarser 
grids. The sources were placed at X = 0, Y = 0 at depths of Z = -0.5 km and Z = -12.5 
km. A reflection symmetry axis was used as a boundary condition on the Y = 0 and X = 0 
planes to reduce the size of the problem by a factor of 4. The geometry is diagrammed in 
Figure 3.1-1. 

The computation was performed over a 200 by 100 by 100 km volume and run to 
durations of about 100 seconds. The recursive grid refinement was used with 21 grids and 
a total of 10 million cells. Each computation required about 3 CPU days on a DEC 2100 
5/250 workstation to complete the 7.3*10" cell-cycles. 

A list of computations is given in Table 1. Two source types were modeled: an 
explosion source with Mxx = Myy = Mzz centered at a depth of 0.5 km and a "double- 
couple" source with Mxx = -Mzz, Myy = 0 at a depth of 12.5 km. Lateral heterogeneity 
was limited to the crust and upper most mantle. The mantle was a homogeneous half- 
space and a simple linear gradient was chosen for the background crustal structure. The 
background velocity model is shown in Figure 18. In order to introduce lateral 
heterogeneity we used the following procedure: 

1) Generate a 3D random array, r(x,y,z), uniformly distributed between -1 and 1, 
sampled at x = 0, ...^„ax, y = 0, ..., y™«, z = z^, ...,0 to fill the volume xmax = 
128 km, ymax = 32 km, Zmin = -32 km, with sampling intervals dx = 1.0 km , dy = 
1.0 km, and dz = 0.5 km.. 

2) Smooth the random numbers in the X and Y directions with a 3-point smoothing 
operator (1,1,1). Re-scale the array to an RMS value of 1. 

3) For a given (x,y,z) location in the crust (z > z^) set the S-velocity to ß_1(x,y,z) = 
ß_1o(z) ( 1 + RMS * r(x,y,z) ). For x > x^, or y > y^, or z > z^, the velocity is 
set to the background model. Run #1 was formulated with fluctuations specified in 
velocity instead of slowness. 

This procedure introduces an-isotropic heterogeneity with characteristic lengths of about 1 
km in the Z and X directions and 2 km in the Y direction. Figures 20 and 21 show two 
ways to visualize this lateral heterogeneity. 

Snap shots of vertical particle velocity from Run#l (5% RMS velocity variation, 
explosion source) along the Y = 0 plane are shown in Figures 22 through 27. Complexity 
of the wave propagation is immediately evident. Development of the refracted P and Pn 
can be seen at T = 15 seconds as well as development of the moho reflection, PmP. Lg can 
be best seen at later times T = 20, 25, and 30 seconds as an interference of up-going and 
down-going waves in the crust. The short-period fundamental Rayleigh wave, Rg, can be 
seen running along the surface at about 2.5 km/s. The disorganized wavefield behind the 
Rg wavefront is simply labeled "coda". Waveforms from Run#l are shown in Figure 28 to 
illustrate that Rg is the most significant arrival at these distances on the surface, and it is 
systematically delayed and attenuated by the random fluctuations. 
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Table 1. Computational Runs. 
|Run# Source Type RMS Variation Source Depth (km) 
J Run 1 Mxx = Myy = Mzz 5% velocity 0.25 
1 Run 2 Mxx = Myy = Mzz 5% slowness 0.25 
I Rim 3 Mxx = Myy = Mzz 5% slowness 0.25 
Run 4 Mxx = Myy = Mzz 0 0.25 

J Run 5 Mxx = Myy = Mzz 5% slowness 0.25 
I Run 6 Mxx = Myy = Mzz 7.5% slowness 0.25 
j Run? Mxx = -Mzz, Myy = 0 7.5% slowness 12.5 
(Run 8 Mxx = -Mzz, Myy = 0 0 12.5 
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dx=0.5km.J   | 
 TT"dx=l"kmi J 

Figure 18. 

100 km 

3 Level Nested Grids 

Diagram of 3 levels of nested grids; 1 grid on level 1, 4 grids on level 2, and 
16 grids on level 3 for a total of 21 grids. Each grid contains 64 x 64 x 128 = 
524,288 cells for a total of 11 million cells. The root grid (102.4 x 102.4 x 
204.8 km) has 1 km cells. The 4 intermediate level grids £81 the space to a 
depth of 51.2 km with 0.5 km cells. The 16 finest level of grids fill the space 
to a depth of 25.6 km with 0.25 km cells. A reflection symmetry axis was 
placed on the Y = 0 and X = 0 planes. The Z = 0 plane is a free surface. 
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Figure 19. Plot of the test structure used in ail computations. P- and S-wave velocities 
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Figure 20. Shear velocity along a Y = Constant slice of the model. The horizontal an- 
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Vertical velocity, ¥=0 plane, T=20 sec, 5% RMS 
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Figure 25.      Run #1 snap shots of vertical particle velocity on the Y = 0 plane, at T = 20 
seconds. 
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Figure 26.      Run #1 snap shots of vertical particle velocity on the Y = 0 plane, at T = 25 
seconds. 
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Figure 27.       Run #1 snap shots of vertical particle velocity on the Y = 0 plane, at T = 

30 seconds. 
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Figure 28. Comparison of finite difference and wavenumber integration synthetics for 
Run #1 (5% RMS, explosion source) at 100 km for Iowpass filters 0.2, 0.4, 
0.6, and 0.8 Hz (top to bottom). Note that the Rg is unaffected in the lowest 
bandwidth and is increasingly attenuated and delayed with increasing 
frequency. Frequencies above 0.6 Hz are affected by grid dispersion. 

3.2    Modal Spectra 

Modal summation is a common approach to either analyze or compute wave 
propagation in a layered structure (AM and Richards, 1980). The methods for seismogram 
synthesis have a long and fruitful history. In particular, Lg can be analyzed as groups of 
the P-SV and/or SH modes. Several researchers have described weak scattering as mode- 
mode conversion, where energy is transferred from one mode to another. We wish to take 
advantage of the machinery developed for modal summation and estimate a "modal 
spectra" or a "modal decomposition". We write the vertical seismogram at frequency, f, 
depth, z, and distance, A, as a mode sum, Sz(f,z,A) = ZJ=I,N €zj(f,A) Bzj(z,f), where Ezjfef) 
is the j'th mode vertical eigenfunction at frequency, f (see Figures 29 and 30). Likewise 
for the radial seismogram, SR(f,z,A) = Ij=j,... ,N CRj(f,A) ERj(z,f). We can then examine the 
modal spectra, Cj(f,A), as a function of frequency and distance. In order to estimate this 
modal spectra, we save the vertical and radial velocities at some distance for each depth 
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in the finite difference grid. Since the eigenfunctions are orthogonal, we should only need 
to compute an inner product between S(f,z,A) and Ej(z,i) to compute the coefficients, 
C)(f,A). However, the finite difference seismograms are only sampled at specific depths 
from the surface to a maximum depth and they contain wave types that are not present in 
the pure P-SV modes, such as Pn and Pg as well as scattered body waves. In short, the 
modes are not exactly orthogonal under the numerical quadrature and leakage can occur 
of the non modal waves into the modes. It helps to use both the vertical and radial motion 
to constrain the modal estimates. We use a stripping procedure described below. 

1) start with mode j = 1 and set 

S z(f,z,A) = Sz(f,z,A) 
S!

R(f,z,A) = SR(f,z,A) 

2) estimate the normalized inner product over depth from z\ to znz 

Ezjo(l) ~ 2k=i,nz Ezj(Zk,f)~ 
•y 

Efyo(f) = £k=i,nzERj(Zk,f)" 
Cj(f, A)= (l/2)2k=Lnz (S'z(f,Zk,A)E2j(zbf),/E2jo(f)+S!R(f,zk5A)ERj(zk,f)/ ERj0(f))dzk 

3) strip the j'th component from the observed seismogram 

S'z(f z,A) = S'z(f,z,A) - Cj(f5A) E2k(z,f) 
S'R(f,z,A) = S'R(£z,A) - Q(f, A) ERj(z,f) 

4) if j < N then increment the mode number] to j + 1 and go to step 2. 

We find this stripping procedure is relatively insensitive to whether we start with 
mode j = 1 and increment to mode j = N, or start with mode j = N and decrement to mode 
j = 1. Amplitude of the residual seismogram is small in comparison to the original 
seismogram. Generally, about 90% of the seismogram energy is accounted for by the 
modal spectra. Obviously, this simple quadrature rule could be refined, but we believe 
that the modal spectra estimated in this way provide insight into the scattering processes. 
Figure 31 shows modal spectra, Cj(fA), for Run#2 (5% RMS) and Run#4 (0% RMS) at a 
range of 120 km. Note the modal cut-off where the number of modes increase with 
increasing frequency. Mode 1 corresponds to the fundamental Rayleigh wave. Modes 2 
through 8 are the higher modes that exist in the test structure for frequencies up to 0.6 Hz. 
The modes are normalized to unit vertical amplitude at the free surface. Therefore, the 
spectral amplitudes can be interpreted in terms of the amplitudes of the modes of an 
observed surface vertical seismogram. The modes, however, may not necessarily arrive at 
their customary group velocities nor as isolated modes in the time domain. Clearly, the 
fundamental is the largest amplitude mode from 0.1 to about 0.4 Hz for both the laterally 
homogeneous and heterogeneous models. The fundamental is the largest mode for the 
laterally homogeneous model (Run#4) at all frequencies, but has been reduced to an 
amplitude comparable to the higher modes at frequencies greater than about 0.4 Hz in the 
laterally heterogeneous model (Rnn#2). We interpret this as scattering from the 
fundamental into higher modes by lateral heterogeneity. A simple way to illustrate this is 
shown in Figure 32 where we form a ratio between the modal spectra from Run#2 and 
Run#4. This modal spectral ratio demonstrates the enhancement of energy in the higher 
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modes at nearly al frequencies at the expense of the fimdamental. Likewise, we show a 
ratio of modal spectra at 60 km to spectra at 120 km im Figure 33. 

TestStructwe. Modes 1-9,0.75 Hz 
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Figure 29. Plots of P-SV modes at 0.5 Hz (right) and 0.75 Hz (left) for the test 
structure shown in Figure 19. Note that the iindamental mode has very little 
motion below 4 km (at 0.75 Hz) and below 5 km (at 0.5 Hz). The higher 
modes sample the entire crust. 
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Modal Spectra, 120 km Vertical Component, 0% RMS      Modal Spectra, 120 km Vertical Component, 5% RMS 
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Figure 31.    Modal spectra at 120 km (top) and 60 km (bottom) for models with 0% 
RMS (left) and 5% RMS (right) lateral heterogeneity. 
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RatioModalSpectra, 120km, 5% RMS /6% RMS 
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Figure 33.     Ratio of 120 km to 60 km. This spectral ratio highlights modes that have 
lost or gained energy between 60 and 120 km. 
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3.3    Wavenumber Spectra 

WMle the modal spectra are useful descriptions of the crustal wavefield, they do not 
provide a complete description. In order to obtain this more complete description of the 
wavefield, we have taken a cue from other numerical methods for computing wavefields 
such as wavenumber integration or phase screen methods. We save the 3 components of 
motion on a 32 km by 32 km vertical plane perpendicular to the nominal direction of 
propagation (X = constant) and compute a 3D FFT of the seismograms to transform them 
from the (y, z, t) domain to the wavenumber-frequency (Fy ,F2, f) domain. Fz = f s^ and Fy 

= f % are the wavenumbers for propagation in the vertical (Z) and transverse <Y) 
directions respectively; s* and s, are the slowness components in the vertical and 
transverse directions respectively. 

The diagram in Figure 34 can be of help in understanding these wavenumber- 
wavenumber spectra. Note that because the finite difference calculations are performed 
with a symmetry axis at Y = 0, the phase plane spectra are also symmetric about the Z 
axis, S(Fy, Fz) = S(-Fy, F2). Waves traveling straight at the phase plane are plotted at the 
origin of the diagram. Upgoing waves arriving perpendicular to the plane plot along the 
positive F2 axis, while downgoing waves arriving perpendicular to the phase plane plot 
along the negative Fz axis. Off azimuth waves (side-swipe) plot away from the Fz axis. 
Since there is a niinimum velocity in the crustal waveguide, all propagating waves must 

plot inside a circle given by (Fz
2 + ¥y

2)m = f / ß^. Waves with Fz = f s, < f/ßmarfde «"> 

trapped in the crust where ßmQntje is the shear wave velocity of the mantle below the 
moho. Because the phase plane has finite dimensions, there are side lobes. Also, all 
outgoing waves are not planar and they have curvature as they impinge upon the phase 
plane; even in the absence of lateral heterogeneity, the spectra are not confined strictly to 
the Fz axis. Therefore, for each wavenumber spectra for a laterally heterogeneous model 
we show the corresponding wavenumber spectra for the strictly layered structure for 
comparison. And, in order to gain insight into the side lobes and impulse response to a 
curved wavefront at a selected distance, we plot the impulse response of some cylindrical 
waves incident upon the 32 km by 32 km phase plane at 120 km from a point source in 
Figures 35 and 36. 
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Figure 34. Diagram of wavenumber-wavenumber spectra at frequency, f. All 
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the finite difference calculations. 
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Figure 35.     Phase plane wavenumber impulse response for a cylindrical wave, 120 km 
from the source at 0.4 (left) and 0.6 Hz (right). 
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Phase plane wavenumber Impulse response for an off-axis cylindrical wave, 
120 km from the source at 0.6 Hz. 

Wavenumber-wavenumber spectra at 120 km and 0.6 Hz from Run # 2 (5% RMS 
explosive source) and Run #4 (0% RMS, explosive source) are compared in Figures 37- 
39. In the absence of scattering, on-azimuth up-going and down-going waves with 
vertical slownesses near 0.3 sec/km (apparent vertical velocity about 3 km/sec) are 
particularly strong on the vertical and radial components of motion (Z and X). 
Presumably these correspond to the developing Lg wavetrain. Energy with vertical 
slownesses less than 0.2 sec/km is presumably related to the developing Pg wavetrain as 
well as steeply incident P and S waves that should escape into the mantle. For all three 
components of motion, we see that scattering has stretched out the spectra in the Fy 
direction indicative of the off-azimuth energy. Scattering has generally lowered the on- 
azimuth energy. Note that the transverse particle motion (Y component) is not identically 
zero for the laterally homogeneous case since the X = !20 km plane is only perpendicular 
to the direct waves at Y = 0. The scattered Y component wavenumber spectra become 
very complicated and fill a larger wavenumber region. 
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Figure 38. Wavenumber spectra of the radial component velocity field on a Y = 120 km 
phase plane at 0.6 Hz for the 5% RMS (right) and 0% RMS (left). 
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Wavexrumber spectra of the transverse component velocity field on a 
Y = 120 km phase plane at 0.6 Hz for the 5% RMS (right) and 0% RMS 
(left). 

3.4    Conclusions 

Modal and wavemimber spectra of phase planes provide tools to analyze finite 
difference simulations of regional scattering. Modes serve as a convenient set of basis 
functions and have a straight forward interpretation. Modal spectral ratios can be used to 
estimate scattering attenuation of each mode and the general transfer between modes. 
Wavemimber spectra are perhaps more difficult to visualize but they provide means to 
visualize off-azimuth waves and waves that are not necessarily trapped in the crustal 
waveguide. 

Fundamental mode dispersion looks significantly different for the randomized models 
than predicted by the average model. The scattering both attenuates the Rg and introduces 
significant group delay. If scattering makes a significant contribution to fundamental 
Rayleigh attenuation, seismologists should be careful interpreting the apparent group 
velocities and the inferred shallow velocities. 

Conversion from the fundamental Rg becomes increasingly important with increasing 
frequency. With only moderate heterogeneity (5% RMS) the P-SV modes are rapidly 
approaching equilibrium at distances less than 100 km for frequencies above 0.5 Hz. 
Likewise, both off-azimuth P-SV and SH energy is significant at 60 km. 
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4.0 Permeable Hose Characteristics and Noise Reduction 
For Infrasound Monitoring 

4.1 Summary 

The proposed CTBT infrasound monitoring network consists of between 50 and 60 4- 
station microbaragraph arrays. Many of the infrasound stations wiE be co-located or 
adjacent to seismic systems and work in concert. Each infrasound station is intended to 
consist of a broadband microbaragraph equipped with several hundred meters of noise 
reduction hose. The permeable hose design replaces Daniels microphone pipes for the 
purposes of spatially averaging wind eddy generated pressure fluctuations. Useful 
detection thresholds for infrasound stations will be directly related to the effectiveness of 
the noise reduction hose arrays. We present an analysis of the differential equations that 
describe the acoustics of infrasound recording with a permeable hose as opposed to the 

. discrete set of coupled equations that have traditionally been used to describe a Daniels 
pipe. It is shown that a hose may be characterized by a characteristic time constant, x0, and 
a characteristic length, M. The time constant is related to permeability of the hose and the 
characteristic length is related to both flow resistance and permeability of the hose. Signal- 
to-noise improvement is directly proportional to the characteristic length of the hose. The 
low pass filer comer frequency of the system is determined by the characteristic time. 
Wavelengths of the pressure field shorter than characteristic length are averaged over the 
length of the hose. A finite difference code, Maxhose, is described that computes response 
of a simple linear permeable hose. The finite difference code is used to model both 
operational hose designs as well as calibration configurations. Simulations of a single hose 
to atmospheric pressure fluctuations are presented for a white noise and a fractal noise 
model. A simple experimental calibration is described to measure the characteristic times 
and lengths of permeable hoses. Calibration results are shown for commercially available 
soaker hose. Typical measured characteristic times are between 10 to 20 milliseconds, 
while characteristic lengths are between 50 and 200 meters. Of particular note are the 
effects of hose degradation during a typical San Diego winter as demonstrated by a 
reduction in characteristic length of the hose by a factor of 2. An operational system 
would have experienced a comparable degradation of signal-to-noise over time. Simple 
calibration systems can be designed to track such hose characteristics. 

4.2 Introduction 

The proposed MS infrasound monitoring system will contain approximately 50 to 60 
primary infrasonic arrays scattered around the globe. These arrays, composed of three or 
more sensors, will often be co-located or near an IMS seismic station. The arrays will be 
designed to provide arrival time and azimuth of arrival of low-frequency 0.01 to 10 Hz 
sound waves propagating in the atmosphere. While the primary mission of the infrasound 
network will be to detect nuclear explosions detonated in the atmosphere, these stations 
may also serve in an ancillary mission to help identify large chemical blasts recorded at 
seismic stations. The final design of sensors and operational procedures for detection, 
location, and identification of infrasonic events are as yet still in flux. Uncertainties still 



exist in the areas of I) excitation as a function of source type (explosion, quarry blast, 
meteor, volcanic explosion) and size 2) propagation attenuation as function of distance 
and frequency, and 3) optimum sensor design, and date processing. 

Figures 40 and 41 show projected detection capabilities in LoglO (Yield in Kt) for 
atmospheric explosions by the proposed IMS infrasound network. These network 
simulations show the proposed network should be able to provide 90% assurance of 
detection at 2 or more infrasound stations at the 1 Kt level for most of the world. The 
90% detection capability rises above 1 Kt in the South Pacific for 3 or more detections, la 
order to make projections such as Figure 41, we require models for 1) the excitation of 
infrasound as a function of frequency, yield, and height of burst, 2) the attenuation of 
infrasound as a function of frequency and distance, and 3) the noise and signal recording 
responses of the recording systems as a function of frequency. However, our 
understanding of all three of these important factors are far from complete. Critical to the 
ability of the proposed networks to monitor near the 1 Kt threshold are the permeable 
hose noise reduction systems. Detection thresholds are inversely proportional to the 
signal-to-noise improvements expected by the hose systems. 

IMS Infrasou 

Figure 40. Contours of detection threshold in Log(Yield in Kt) at 90% probability for 
2 infrasound detections at stations of the proposed MS. Event scaling, 
attenuation relations, and noise levels based on Blandford and Ciauter 
(1995) have been used. Thresholds are below 1 Kt nearly everywhere. 
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Figure 41. Contours of detection threshold in Log (Yield in Kt) at 90% probability for 
3 infrasound detections at stations of the proposed MS. Event scaling, 
attenuation relations, and noise levels based on Blandford and Clauter 
(1995) have been used. Thresholds reach 2 Kt in the South Pacific. 

43    Theory of Noise Reduction Hoses and Their Calibration 

The concept behind the use of a noise reduction hose relies on the fact that wind 
generated turbulent eddies have shorter apparent wavelengths than an infrasound signal 
arriving from great distance (Cook, 1971; Mack and Flinn, 1971; McDonald et ah 1971). 
The hose "averages" the local atmospheric pressure along its length and the incoherent 
eddies are "averaged" out. 

Pressure / 
Gauge 

.--Wind,GerreTäted Eddies   \ 

Soaker Hose 

Ground 

Figure 42.     Wind generated eddies create pressure fluctuations and hence noise. The 
permeable hose acts to spatially "average" the pressure fluctuations. 



The original Daniels pipe (Daniels 1959) was conceived as a discrete set of inlet ports 
along a length of pipe. Grover (1971) presents results for pipe arrays with hypodermic 
inlet ports, while Burridge(1971) presents a numerical solution to this discrete system of 
inlet ports, with a propagator method (a system of coupled equations). However, with the 
advent of soaker hose, the system is analogous to a transmission line or antennae problem 
and requires the solution of coupled partial differential equations. 

An element of hose of tengthdx 

dx 
mmm 

2a 

r 

qx 

qa »* 

x 
Figure 43. A hose element: length dx, radius a, flow in me x direction qx, flow in/out qa. 

We consider an element of permeable hose of length dx and radius a. From 
conservation of mass we write, 

m(x, t) = p(x, t) Adx = q(x, t) = qa (x, t) - (qx (x + dx,t)- qx (x, t)\ 

where x is the distance along the hose, t is time, m is the mass of air in a length of hose 
dx, p(x,t)=p(x,t)/(RT) is air density at temperature T, A is the cross sectional area of the 
hose, q(x,t) is the total mass flow in the hose, qa(x,t) is the mass flow into the hose from 
outside per unit length, and qx(x,t) is the lateral mass flow along the hose in the positive x 
direction. We assume that air diffuses into and out of the hose proportional to the 
pressure difference, (p^x,t>p(x,t))3 where pa(x,t) is the pressure of the atmosphere outside 
the hose and p(x,t) is the pressure inside the hose, 

qx = pAv = 2^ae(pa (x, t))- p(x, t)dx, 

where e is a diffusion constant per unit length related to the permeability of the hose with 
radius, a. We next ignore inertial effects and assume that flow along the hose is steady 
state and proportional to the gradient of pressure along the hose, 

qx = pAv = (l / v)dj?(x, t)dx, 

where v is the hose flow resistance per unit length and v is the flow velocity. Grover 
(1971), gives excellent evidence that flow in noise reduction pipes can be described by 
simple Poiseuille flow where the hose resistance is proportional to viscosity, 
v -Brjl'pi' Jüf a4 , where r\ is the viscosity of air. We combine these equations to write a 
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partial differential equation for the pressure along the hose in terms of the external 
atmospheric pressure, 

ox 

This equation describes the hose system driven by the atmospheric pressure along its 
length. We transform from the time-length domain, (x,t), to the frequency and 
wavenumber domain, (®,K), 

p(x,t) = j  p(m,K)exp(-iat)Qxp(-iKx)d(JOdK. 

We can write the solution in the frequency-wavenumber domain, 

Ka, *)= %—PMK)> 
(l+ia)fa>0 +(—)2) 

KQ 

p{co, x) = J pa {co, K) exp{-iKx)dK. 
(l + i(D/G)0+(—)2) 

Now we observe that a far-field signal has the form pa(o),k)- S(K)PS(CO), so the signal 
pressure in the hose is simply 

1 
(l-riT6)/fö0) 

The typical soaker hose has a characteristic time constant, To = 2JC/Q0 = 2fta/(2RTe) < 0.2 
seconds, so the pressure signal inside the hose is a faithful representation of the signal 
outside the hose for infrasound frequencies of Interest. This characteristic time is 
determined by the permeability of the hose. A very permeable hose has a short time 
constant while an impermeable hose has a long time constant. If we write the atmospheric 
noise as pa{w,x) = pn(m,x) then the observed noise signal is given by a Fourier integral 
over the wavenumber spectrum of the atmospheric noise, 

P**e(®>x)= f z p„{<o,K)exp(-iKx)dK, 
VZ + Kö/^+f—-f) 

This integral in general cannot be evaluated in closed analytic form; however, by 
inspection we can note several interesting features. The incoherent atmospheric wavenumbers 



K \2 are attenuated proportional to (—Y vettere x^ = 2mev = 4nAvI{RT)IT0 = (27ZIä0)   is 
*b 

the characteristic wavenumber for the hose. The smaller the characteristic wavenumber, 
the more attenuated will be the incoherent waverjumbers of the noise field. Note that the 
characteristic wavenumber for the hose is inversely proportional to the characteristic time 
constant Therefore, a long time constant means more noise attenuation for a fixed length 
of hose. Typical soaker hoses have characteristic lengths, XQ, of about 50-200 meters, but 
we have found that time constants and hence characteristic lengths and the potential noise 
reduction change with time as the hose ages. 

44 L Test Chamber 
Pressure 
^»^W [~ -imSoakerHose Cap     |12CCfringe 

Figure 44. A simple and inexpensive calibration configuration. 

The diagram above (Figure 44) shows an experimental setup for measuring time 
constants of a soaker hose. The soaker hose is placed in the 44 Liter volume test chamber. 
The test chamber volume is then altered with a 12 cc step function volume decrease, 
producing a change in pressure of about 300 microbars. Pressure in the soaker hose is 
recorded using a differential pressure gauge (microbaragraph). The experiment is repeated 
with different lengths of hose and different amplitude step functions to test for linearity. 
Pressure transients measured with this setup are shown in Figure 45 for a virgin soaker 
hose and the same brand of hose left outside for six months during a typical San Diego 
winter. The time constant for tins aged hose has decreased by nearly a factor of two. 
Hence, noise reduction will have decreased by nearly the same amount. 
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5/8 Inch Soaker Hose - Rise Time Measurements 
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Figure 45. Shows rise time calibration of two 2.082 m long hoses. The "aged" hose had 
been exposed to the elements for about 6 months during a typical San Diego 
winter. The rise time and hence the characteristic length of the aged hose is 
about 50% that of the virgin hose. 

Other diagnostic tests are possible for hose systems. The diagram below (Figure 46) 
shows one such simple test. The results are shown for two identical lengths (about 10 m) 
of virgin and aged soaker hose (Figure 47). The change in response of the two hoses is 
clearly evident. In particular, the aged hose transmits nearly half of the pressure amplitude 
injected compared to the virgin hose. This again demonstrates the importance of 
controlling permeability of the hose system. This experimental test setup is not as easily 
analyzed as the previously described arrangement, but it is diagnostic. There is a tendency 
for a damped Helmholtz oscillation to occur. With shorter lengths of hose this Heimholtz 
oscillator can be used to measure other properties of the hose such as the flow resistance 
(damping). 
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Figure 46. A staple, ^expensive diagnostic configuration. The analysis is not as 
simple, but the test is sensitive to both the time and length constants of the 
permeable hose. 

5<8 Inch Soaker Hose - Impulse Test 
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Figure 47. Two short sections of 5/8" permeable hose were tested using the end-on test 
geometry described in the text. The virgin sample shows a longer time 
constant and a higher transmittance than the hose exposed to the elements 
for about 6 months. Increased permeability of the aged hose has shortened 
the characteristic length and hence the transmittance of the hose by about a 
fector of 2 at long periods. A small Helmhohz oscfflation is evident in the 
virgin hose but was not excited under identical condition for the aged hose. 
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4.4    Analysis of a Heimholte Oscillator 

If a manifold is connected to a short non-permeable hose and a step function in 
pressure is applied to the manifold, it is possible that a Heimholte oscillator may be set up. 
This condition occurs when the slug of air within the hose protrudes into the reservoir 
without immediate mixing and the reservoir acts like a spring. The slug of air acts as a 
mass connected to the spring and a damped simple harmonic oscillator is set in motion. 
The viscous flow of air back and forth in the hose causes damping proportional to the flow 
velocity and the damped simple harmonic oscillator can be modeled to "measure" the 
damping constants used in the previous analysis. 

Vr 

L 

m = = pAL 

Figure 48. Simple diagram of the principal part of a two-ended Helmholte oscillator. 

The geometry of the oscillator is shown above (Figure 48). The air mass in the length of 
hose is given by m = pAL. The displacement of the air mass in the x direction is u(t), and 
we write Newton's first law, 

mit- : pALü = -L£u+A{P1-Pr), 

where Pr and Pi are the right and left manifold pressures. If the slug of air protrudes into 
the manifold with displacement u, and does not mix with the air in the manifold, then the 
effective volume of the right and left manifolds is Vr = Vor - Au and Vi = V0i + Au, where 
Vro and V» are the original right and left manifold volumes. The right and left manifold 

pressures are given by 
SPr    5Vr and 

* 0 'Or 

equation for a simple harmonic oscillator, 

SPi _§vL 

V 
With some algebra, we have the 

1      1 
pA Lu = L£u+ A(PJ - Pr) = LCü- A2P0u — + — 

Or 
», 

02/ 

„_ £ ü   AP,{ 1 
Ap      Lp \V0r 

\ 

V 
U--VÄÜ- 

ART 

01 J L \y0r 

1 1 
—4-  u. 

with natural frequency a>0 = ^JART(l/V0r + IIV„)IL-^JA2P0(lf V0r4-//Vm)lm and 
damping constant ß = v A/2 = g/(2Ap). The natural period is proportional to the 
square root of the manifold volumes and the square root of the hose length. It is desirable 
to keep manifold volumes small and hence keep parasitic Helmholte oscillator frequencies 
in the hose array above the infrasound frequencies of interest. Likewise, it is desirable to 
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avoid large changes in the cross sectional area of the operational hose-manifold system to 
avoid the Heimholtz instability. If we assume Poiseuüie flow in the hose then the damping 

•■■-•'•■■ 4« 
constant only depends upon air viscosity, air density, and hose radius,   ß=—j. The 

damping constant does not depend upon the length of the hose. These relations can be 
used to determine damping characteristics and hence drag terms as shown in Figure 49 
below. 

Hctahofcz OscOaior - Nonpctmoable Hose 

o 
O 

Seconds 

Figure 49. A 0.32 m section of 5/8" non-permeable hose was set up as a Heimholtz 
oscillator and subjected to a 0.5 millibar step function change in pressure of 
one manifold. Crosses are data, the dotted line is a damped sinusoidal fit to 
the data. The damping constant, x = 1/ß = 0.37+/-0.01 sec, is a measure of 
flow resistance in the hose and is consistent with Poiseuflle flow. 

4.5    Finite Difference Modeling, Maxhose 

We have developed an implicit finite difference code, Maxhose, to simulate the 
response of a permeable hose and manifold system. Our goal was to model calibration 
configurations such as those shown in Figures 46 and 47 as well as the response of a 
system to an arbitrary atmospheric pressure field specified as a function of position and 
time. We start with the partial differential equation for pressure in the hose as derived 
above, 

,    v   (RT\    /   ,    w    /    \   (RT}d2p(x,t) 
Av dx~ 

and define cl = (RT/Av) and c2 = (RT/A) 2 % a e. We discretize the space and time 
variables, Xj = Xj.i + dxj and 4 = t*.i + dt* and define a pressure vector of jth hose 
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elements, p/n) for time t» and pj(lrf) for time W Pressure, pj, is the pressure of the volume 
between Xj = xj.i + dxj with cross sectional area Aj = % a/ and volume Vj = Aj dxj. We 
follow the Crank-Nicolson impEcit method (Smith 1978; Davis 1986) to derive a set of 
second order finite difference equations for the pressure updates at time step n+1 from the 
pressures at time step n. The system of equations that must be solved is, 

^-{c]diJ2idx^-2^+^?) 

pf + (c^J2/dx^I-2pf+p^-(c]dtJ2)pf 

+{3c2.dtJ2)pf 

+tfdtm 12){pfJ) +/£> - 2pf), forj = 2, N-l 

where p, is the pressure inside the j'th element of the hose and paj is the atmospheric 
pressure outside the j'th element of the hose. Note that cl and c2 may depend upon 
position along the hose and that the spatial differences must be altered if hose elements are 
not uniform lengths, dxj. We use second order approximations for the spatial and temporal 
derivatives. We require two sets of boundary conditions at the ends of the hose at xi = 0 
and XN = L. The first useful boundary condition is a no-flow condition where the spatial 
pressure derivative is zero. The left-hand side no-flow boundary equation becomes, 

pffi -p{^1} = 0, where] = / 

and right-hand side no-flow boundary condition 

P%1) ~ P^ = °> whereJ = N- 

The second set of useful boundary conditions are volumetric reservoirs or manifolds at 
either end of a hose. In the case of multiple hoses, they are connected by manifolds of 
finite volume. If we assume pressure changes in the manifold are at constant temperature, 
then we have the relationship p/(mass/V) = pip = RT = po/po for the manifold. The change 
in pressure is therefore proportional to the mass flux, 

Sp = p— = (p / m)qxdt = {RT/V)dt{l/ v) dp(x, t)l dx. 
m 
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If we have volume reservoirs of volume Vj at j = 1 and/or j = N, then using the Crank- 
Nicolson scheme we arrive at the left-hand side boundary condition equation, 

P) 
(iH-i), RTdt 

2vVJdxjJ 
\pfri -Pj   )-Pj + 

RTdt 
2vVidxj) 

{p%-P?)forj~l, 

and the right-hand side boundary condition, 

P) 
t***) _ RTdt 

K2W}dxu 
(#)-#1)) = # + 

RTdt 
2vV-jdxJ j 

[p%-pf\ foxl = K. 

Equations documented up to this point assume momentum of the gas within the hose is 
insignificant or inertia! forces are not significant. Under some circumstances this may not 
be the case, so we now derive equations for the velocities, vj, along the hose. The rate of 
change of momentum in the x-direction in the hose element of length, dx, may be written, 

d(mv) 
dt 

= mv+mv~ (pAdx)v 

= ^-4M*+^)-iK*)) 
=$dxv - A(p(x+dx)~ p(x)) 

=- pvA2v - A(p(x+dx)- p(x)). 

We must assume that mv« mv or nonlinear terms (velocity times pressure) will appear in 
the response of the hose and we have, 

v= vAv- f —  X 
^pdx) 

(p(x+dx)-p(x)y 

Note that for constant velocity flow with a constant pressure difference along a section of 

(/?(*-*• dx)-p(x)), and if this corresponds to simple Poiseuiile hose we have v = 

7ta 

vApdx 

flow, vpA = (p(x+dx)-p(x)), and the flow resistance constants may be computed 
%7jdx 

from the air viscosity, £ = Smj, v = 877/ KI p/a4. 

Let c3 = -Av/dx and c4 = -A/mass = -l/(pdx). We let the discrete velocity vector, vj, 
correspond to the velocities between the hose elements at x = Xj at node j. Therefore, the 
velocities and pressures constitute a staggered grid. Pressures are defined between Xj and 
xj+i while the velocities are defined at Xj. Again, we apply the Crank-Nicolson formalism to 
derive finite difference equations that couple velocities and pressures at time, Vi, and I*. 

46 



Note the c4 coefficients depend upon local mass and therefore they are time dependent 
and must be updated with each time step using 

dm^dta^lp^-pf-p^) 

(*\ 
+ 
\vi 

'fö-fö+ffi-ppM**,). 

For left-hand side no-ftow boundary conditions we have,v*B+/) = 0,>r/ = i. For right- 

hand side no-flow boundary conditions we have,\ffn = 0,forN+].lfwe have no-flow 
boundary conditions on both ends of the hose, then there are N hose elements (pressures) 
and N+l nodes (velocities). 

If we have a volumetric reservoir at j = 1 then the j = 1 velocity corresponds to the 
flow velocity between the reservoir and the first hose element, consistent with our 
previous pressure boundary condition equations, we have, 

/+• 

die 3^ 
.__ 

dtc3A 

dtc4. 

2   j 

If we have a volumetric reservoir at j = N, then the] = N-l velocity is between the last 
(N-l) hose element and the reservoir. The right-hand side boundary condition becomes, 

/   dtc2i-1\^j)   dtc4i-i l^i)    J.«^))- j __ v)_;  -     2     \p}.        Pj     J- 
f 

V 

(     dtc3,. A 
1+ 3— 

I 2    J 

For both right-hand and left-hand side no-flow boundary conditions there are N pressure 
equations and N+l velocity equations. For both right-hand side and left-hand side 
volumetric reservoirs there are N pressure equations and N-l velocity equations. At each 
(n+l) time step, linear equations are solved, Au(n*!) = Bu(n) + C(w<n> -u<a)) = b(a), for the 
new vector, u<Il+1>, of pressures and velocities W^ is the vector of atomospheric pressures 
along the hose. We construct the pressure-velocity vector components; u2j = Pj, u^-i = Vj, 
and w2j = ps;, W2J-! = 0, for j = 1 to N. Caj.i),(2j-i) = 0 and C33 = 1 for j = 1, N. The A and 
B matrices are very sparse but not necessarily banded when multiple coupled hoses are 
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considered, therefore a general sparse matrix linear equation solver is used rather than a 
solver that assumes a strictly banded system. 

4.6    Stability Conditions 

While the Crank-Nicolson implicit scheme is generally stable regardless of time step 
size, we address one possible source of instability. Negative values of pressure and mass 
are valid solutions to the equations but physically meaningless. Mass and pressure are 
explicitly positive quantities; therefore, we wish to avoid large changes in the mass of any 
hose or manifold element, \8m\<m at any given time step. The lateral mass flux across 
each node should be small compared to the mass within an element during a time step, 

\dni = \dt^(~)\   <   pvollRT=pdxAIRT, 

which leads to a restriction on the time step, dt, for each node, 

dt< 
p dx Avw      Pj     (äx2AjV^ 

RT]dpfdx\    \pj-Pj4i   RT 
Pj 

f 

\Pj-Pf-i\K 
7CZai 

dx2 

0/   12 k ■Ojf. 

for all j. 

Likewise, the change in mass of the right- and left-hand volumetric reservoirs should 
remain small compared to the mass of these reservoirs as well as the mass of their adjacent 
hose elements. The conditions for these restrictions on ^t are easily derived. We write 
them here for completeness, 

and 

\Pj-Pi- 

RT\P:-PJ4 

The diffiisive flows into or out of the hose elements must also remain small for each time 
step, 

|A*| = ^dt2nae(pa - p)dx\ < p vol /RT=pdxA /RT, 

f A 

dt<- Pi 

Wo-Pt-A 

Pi 
KRT2mjej \P«-Pj-i\ 

IM. 
K2KJ 

for all j withe;. >0. 

48 

i  



4.7    Hose Calibration Simulation 

Figure 50 shows three Maxhose simulations of the calibration test configuration 
diagramed in Figure 44 compared to virgin hose data from Figure 6. A proper analysis of 
the calibration data requires that the pressure gauge manifold be included in the response. 
When the manifolds are included in the simulation, the value of To = 0.10 sec. fits the data 
very well. 

5IS fecfc Soaker Hose - Rise Time Measurements 

Time <scs) 
0.5 

Figure 50. Comparison of data and Maxhose finite difference simulation of the 
calibration test configuration of Figure 44. 

4.S    Finite Difference Simulations of Wind Noise Response 

We have demonstrated the use of the finite difference code, Maxhose, to model the 
hose response from atmospheric wind noise. An atmospheric pressure history is specified 
as a function of time and position along the hose, pa(t,x), and the pressure inside the hose 
is computed. Figure 51 shows the results for pa(t,x) specified as white noise on a 50 m 
hose with characteristic time of 0.01 second and a characteristic length of 100 m. While 
this is not a realistic wind noise situation, it illustrates several aspects of the permeable 
hose response. The numerical experiment was repeated for several hose lengths and the 
predicted noise reductions are summarized in Figure 52. RMS noise levels are reduced by 
nearly a factor 40 in the middle of a hose that is longer than 1/2 the characteristic length. 
Noise reduction saturates at about 1/2 the characteristic length. For such a hose under 
white noise conditions, noise levels at the end of the hose are roughly 30% higher than 
the levels in the center of the hose. 
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Internal Hose Signal -White Noise Atmospheric Model 
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Figure 51. 

Figure 52. 

Pressure (atm) 

Pressure variation in the hose as a function of time (seconds) and position 
(X in meters) for random white noise pressure fluctuations in the 
atmosphere. Note that the hose smoothes out the pressures along the hose. 
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RMS pressure fluctuations normalized to external atmospheric RMS 
fluctuations at the end of the hose and in the middle of the hose versus 
different hose lengths for a fixed characteristic length hose. Note that noise 
reduction is best in the middle of the hose. 
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Under more realistic wind conditions, atmospheric pressure fluctuations exhibit 
spatial correlation. Given an arbitrary correlation function or power spectrum we can 
synthesize a realization of the atmospheric noise, m the absence of a deterministic wind 
model, we have postulated that pa(t,x) appears as Brownian or fractal noise with a power 
spectrum that is inversely proportional to frequency and wavenumber, f~a and k"*, where a 
and b are specified constants. Figure 53 shows the results of such a Monte Carlo 
simulation with a = b = 2. The same hose characteristics were used as in previous 
simulations. An ambient atmospheric pressure noise source is shown with a power 
spectrum approximately proportional to k"2 and f2 is shown on the left and the internal 
hose pressure fluctuations are shown on the right. Note that the hose has spatially 
averaged the pressure field. High frequencies and spatial wavenumbers have been 
reduced. However, low spatial wavenumbers are still evident in the internal hose signal 
(Figure 54). 

HoseThPcsstyrcFIucMJaäccxa  Haat 
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IRE      '3M 
-2..V3*   '34«-6t   &£V*CÖ    LSe-ö*    2.Se-&4 -5-öo-ÖS    Ö.Ö*+OÖ    5-Ce-OS     I,0«-04 

Figure 53. An atmospheric pressure history as a function of space and time on the left 
and the resulting pressure fluctuation signal in the hose on the right. The 
50 m hose reduces the atmospheric noise by averaging it over the length of 
the hose with characteristic length of 100 m. 
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Figure 54. Pressure fluctuations inside and outside the middle of the hose simulation of 
Figure 53. 

4.9    Conclusions 

Noise reduction is critical for the successful utilization of microbaragraph arrays in a 
future CTBT system. Current plans for the IMS anticipate signal to noise increases from 
multiple hose arrays on the order of 100 for common wind conditions. 

We present an analysis of the partial differential equations that govern the response of 
pressure within a permeable hose to external atmospheric pressures. We show that a hose 
may be characterized by a time constant and characteristic length. The characteristic time 
constant is determined by the permeability of the hose. The characteristic length is 
determined by the permeability of the hose and flow resistance along the hose. Methods 
for measurement of the time and length constant are proposed. 

Noise signals in the hose will be attenuated for pressure fluctuations in the atmosphere 
with wavelengths shorter than the characteristic hose length. Infrasound signals with 
apparent wavelengths longer than the hose will not be so attenuated and the hose affords a 
net signal-to-noise ratio gain. Control of permeability of the hose is critical to the signal- 
to-noise ratio gains that can be realized. Measurements of the time constants of hoses have 
shown that the permeability can change by a factor of two due to natural weathering of a 
hose. Methods must be devised to protect hoses in the field and to diagnose hose 
degredation in operational systems. 
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Conversion of the partial differential equations to a finite difference program, 
Maxhose, is described. Maxhose simulates hose pressure response to an arbitrary 
atmospheric pressure defined as a function of time and position along the hose. This 
second order implicit Crank-Nicholson code runs on UNIX workstations and Windows 95 
computers. Results are shown for simple calibration configurations and for two Monte 
Carlo realizations of wind noise. If wind noise is uncorrelated in space and time, then noise 
reduction for a single hose is predicted to be about a factor of 40 and maximized in the 
center of a hose at least as long as 1/2 the characteristic length. Noise reduction for a 
single hose in the case of fractal noise is somewhat less and depends critically upon the 
details of the atmospheric turbulence spectrum. Maxhose can be extended to simulate 
multiple hose arrays and wind noise with arbitrary correlation structures in space and time. 
Analysis of this kind coupled with an understanding of wind noise correlation structures 
will prove useful in understanding the potential for permeable hose noise reduction. 
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